タグ「ディープラーニング」の記事一覧

  • このエントリーをはてなブックマークに追加

Build Insiderオピニオン:吉崎亮介(1)

人工知能・機械学習・ディープラーニングとは? 基礎概念まとめ

Microsoft・Preferred Networks公認のデータサイエンス人材養成トレーナーであるキカガク吉崎氏による「機械学習」コラム連載がスタート。ビジネス視点も踏まえつつエンジニア向けにAI・ディープラーニングを実践で活用する方法を紹介していく。まずは基礎概念から理解しよう。

Deep Impression

Chainer×Azureの関係とは? Preferred NetworksのCEO、西川氏が登壇。Microsoft Japan Partner Conference 2017 Tokyo

PFN(Preferred Networks)のDeep Learningライブラリ「Chainer」とクラウド「Azure」の協業関係の具体的な内容について、PFN社のCEO自らが日本マイクロソフトのパートナー向けカンファレンスで説明した。

書籍転載:Thinking Machines ― 機械学習とそのハードウェア実装(14)

CNN(畳み込みニューラルネットワーク)/RNN(再帰型ニューラルネットワーク)/AE(自動符号化器)の応用モデル

CNN、RNN、AEといったネットワークモデルを拡張あるいは組み合わせた「Deep Convolutional Generative Adversarial Networks」「Highway Networks」「Stacked Denoising Autoencoders」「Ladder Networks」「Residual Networks(ResNet)」を紹介する。

書籍転載:Thinking Machines ― 機械学習とそのハードウェア実装(13)

ネットワークモデル開発時の課題 ― 深層学習の基本

訓練と交差検証で誤差率が高い場合は、バイアスが強い「未適応状態」もしくはバリアンスが強い「過適応状態」である。このバイアス・バリアンス問題の調整について概説。

書籍転載:Thinking Machines ― 機械学習とそのハードウェア実装(12)

深層学習と行列演算 ― ディープラーニングの基本

「深層学習の行列表現とそのデータサイズ」「行列演算のシーケンス」「パラメーターの初期化」について説明する。

書籍転載:Thinking Machines ― 機械学習とそのハードウェア実装(11)

機械学習ハードウェアモデル ― 深層学習の基本

深層学習における、パラメーター空間と順伝播・逆伝播演算の関係を説明。また、代表的な学習の最適化方法と、パラメーターの数値精度についても紹介する。

書籍転載:Thinking Machines ― 機械学習とそのハードウェア実装(10)

ディープラーニング(深層学習)の基本: 数式モデル

ディープラーニング(深層学習)の一般的なネットワークモデルである「順伝播型ニューラルネットワーク」の、各ユニットにおける演算を表現する数式モデルを示しながら、その意味を説明する。

書籍転載:Thinking Machines ― 機械学習とそのハードウェア実装(8)

ディープラーニングを含むニューラルネットワーク・モデルと、そのハードウェア実装

一般的なニューラルネットワークモデルとディープラーニング(深層学習)について紹介。さらにそのハードウェアを実装するための一般的な方法を説明する。

まだ知らないエンジニアのための人工知能/機械学習概説

第3次人工知能(AI)ブームにおける機械学習、そろそろ入門しよう!

人工知能がブームになった歴史から、機械学習との関係、解決できる現実問題、話題のディープラーニングまで、AI&機械学習をまだ知らない人の疑問に答える基礎解説。

イベント情報(メディアスポンサーです)

サイトからのお知らせ

Twitterでつぶやこう!